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Abstract. The growth of wind power production in the electricity portfolio is striving to meet ambitious
targets set, for example by the EU, to reduce greenhouse gas emissions by 20 % by 2020. Huge investments
are now being made in newffehore wind farms around UK coastal waters that will have a major impact

on the GB electrical supply. Representations of the UK wind field in syntheses which capture the inherent
structure and correlations betweeffeiient locations includingftshore sites are required. Here, Vector Auto-
Regressive (VAR) models are presented and extended in a novel way to incorgistateetime series from

a pan-European meteorological model called COSMO, with onshore wind speeds from the MIDAS dataset
provided by the British Atmospheric Data Centre. Forecasting ability onshore is shown to be improvd with
the inclusion of the fishore sites with improvements of up to 25% in RMS error at 6 h ahead. In addition,
the VAR model is used to synthesise time series of wind at efishare site, which are then used to estimate

wind farm capacity factors at the sites in question. These are then compared with estimates of capacity factors
derived from the work of Hawkins et al. (2011). A good degree of agreement is established indicating that this
synthesis tool should be useful in power system impact studies.

1 Introduction tical approaches. A literature review of the latter appears i
Hill et al. (2012).
The spatial correlation of wind speeds (and hence wing
The potential of wind power to contribute to demand for elec- power) over scales over several hundred km is well knowr
tric power needs to be fully assessed fifeets of climate (Hill etal., 2012). This was discussed by Oswald et al. (2008
change on food production, water resources, insurance costsho looked at an extreme event and evaluated quantitativel
and so on are to be avoided. In order to facilitate such asses&y Sinden (2007) and Gibescu et al. (2006). Failure to mods
ments, a Vector Auto-Regressive (VAR) model-based syn-such correlations will result in excessive aggregate smooth
thesis has been developed previously by the authors usinipg of wind power output, and an underestimate of the nee
just onshore data (Hill et al., 2012). These syntheses confor reserve and unrealistic inter-area power flows importan
tain information about the annual and diurnal trends as wellin network constraint cost analysis.
as the stochastic component. Many studies have addressedA de-trending process is briefly described in the Method-
the potential impacts of wind power on a power system (e.gology. The Results section depicts forecasting skill and

Strbac, 2002; Gross et al., 2006; Cox, 2009)f@ent ap- also shows model to model comparisons of capacity fact

proaches have been taken to the representation of wind speéddrs with work carried out by Hawkins et al. (2011), which
structure — numerical weather prediction models (e.g. Aignerdescribes the meteorological model used in their work an
and Gjengedal, 2010), an approach incorporating reanalyincorporating a calibration process.

sis and mast datasets (Kubik et al., 2013) or purely statis-
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longitude (degrees) trends. In the current work, the trends for all the onshore sites

Figure 1. Map to show locations of sites onshore anfisbore ~ are calculated based on data from the same period, i.e. Jan-
where time series input to VAR model, results of labelled sites ap-uary 1996 to December 2005, while the trends for all the
pear in Fig. 3. offshore sites are based on data from January 2006 to De-
cember 2006, referred to henceforth simply as the year 2006.
These sets of site-by-site trends are subtracted from obser-
vations at each site in 2006 to form the training set for the
VAR model.

The harmonic analysis described in Hill et al. (2012) re-

A key innovation in the approach taken here is a de—trending11ains the same in this work, with an annual component mod
r represent th lical varying components of win ; _ : . )
process to represent the cyclical varying components o elled with Fourier term§), 2Q and 32 (whereQ is the annual

speed and then a stochastic VAR model is applied to the de- : i
trended component. The MIDAS set of onshore weather datgngula_r frequency) and a seasonqlly varying diurnal compo-
produced by the British Atmospheric Data Centre (UK Me- nent withe andF_:lu tZe;ms (wheraw :S trﬁhmdh anglutlar f(rje-
teorological Qfice, 2012) and representing observations atqu_?rr:cy) —ds;ae '9. " otr andexampe 0 i € diurna Ten 3
10 m above ground level was used as the initial source of on- ese deterministic trends, represen egdbfannual) an
shore wind speeds. Modelled sites were chosen onshore thafs (seasor_lally varying d'“ma')’ are then subtrac'Fed from the
have> 90 % coverage for the period January 1996 to Decem-]c ata,y, as in Eq. %']to obtain th?\(/:le-;trenAd(-:-td Is:ee”%’ b?'
ber 2005, taken as the trend formation period onshore. These' € cOMMenNcing the process ot Vector Auto-Regression.
sites also had 90 % coverage from January 2006 to Decem-

. . t) = y(t) — ya(t) — t 1
ber 2007, for use in the VAR modelling process. Observa-ydt() YO = ¥a®) ~ Yas(t @)

tions from multiple dfshore locations could not be obtained. The VAR model is represented by EQ) (where®; and®,
Instead, @shore data for the latter period was obtained from 5re 50« 50 matrices (known simply as the VAR dieients)

the Consortium for Small-scale Modelling (COSMO, 2010), reflecting the influences between the 50 sites under consid-
meteorological model (Doms and Schattler, 2002), whichgration at lagg-1 andt-2 h respectively. There is no sim-
does not sfier from data gaps and represent wind speedgyje physical interpretation ab; and®; but an equation in

at 10m above sea level. See Fig. 1 for site locations, whosgne myltivariate case can be derived which is similar, but not
offshore locations are the same as those used in the Scottifientical, to the Yule-Walker equations of the univariate case,
Electricity Dispatch Model (SEDM) which made use of the yhich in turn relates the covariances of the observations to

weather model developed by Hawkins et al. (2011). the auto-regressive cfiients (see for example Sect. 3 in
Some form of de-trending of the data is necessary to €Ny jjikepohl, 2005).

sure a reasonable degree of stationarity in the de-trended

series, an assumption of the VAR modelling. In Hill et vy = ®;yg1+ Poyao + & 2)

al. (2012) the wind speed data were first de-trended site by

site by the suitable application of harmonic analysis to what-The vectoryy; is a column vector containing the de-trended
ever period of data existed for those sites. A concurrent peseries, one site per row amglis a Gaussian (normally dis-
riod common to all sites was then taken for which to cal- tributed) noise term. Equatio2)is first applied to the train-
culate the de-trended series. However, in previous work, foiing period of year 2006 to define the VAR model by finding
some sites, a longer period than that was used to calculate thbe VAR cosdficients®; and®, which minimise the sum of

2 Methodology
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squares of the residualg, € in a least squares approach. = %
The year 2007 is reserved for assessing the forecasting acct § 25 Onshore
racy and the determination of the standard deviation of the §20

noise term. The VAR cd#cient matrices are used to drive a 15

synthesis of wind speeds by utilising E®) @s a recursive

equation using observations at each htdrandt-2 with

the output at time given simply as Eq.4) with no noise 5 y - -
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t to determine the one step ahead forward prediction error. . 5, """ """ e
The process is stepped forward in time and repeated so that £ 5| ——On-Offshore £ 5| —On-Offshore
succession of error values is found enabling its standard de-§ 5, " g o onenere
viation o to be calculated. Along with a mean of 0, this is § 15 § 75 /
used in a Normally distributed\((0, o)) noise terme thus 5 10/ ///__ 5 10 .
completing the VAR model. g e — g 5

The number of VAR matrix terms in the model was 2z | - z 0. :

chosen so that this one-step ahead error was minimised O Lakhead (Hourg | chead foues]
The addition of the 2nd term provides a small improve- Aultbea2 West Freugh

o . . . .
ment of 2.49%, whilst a possible3 term did not provide Figure 3. Forecasting skill of VAR model with improvements com-

further.lmp.rovements. . . . pared with persistence forecasting, at 4 sample sites for purely o
Application of the model to synthesise a wind speed timegpore model and mixed onsh¢n@ishore model.

series starts from some initial condition at tinygg andyq1

together with the one-step ahead forward prediction error. Fi-

nally, the value of the trend for the synthesised hour is addedy a wind farm in a given period to the total amount of en-

to the output of the VAR model. ergy it would have generated had it been generating at fu
The aim of this modelling process is to allow the under- power). Comparisons are then made with the results achievd

lying local meteorological characteristics to be captured soin the development of a prototype Scottish Electricity Dis-

that the developed model is able to describe all sites and thepatch Model (SEDM) for analysis of the GB power market

interactions, in particular the fierences between actual con- and which used a large set of data derived from a meteorolog

ditions, hour by hour, and the underlying trends. The modelical model without any statistical model, based on (Hawking

also provides a prediction (forecast) of the next hour, givenet al., 2011), referred to below as “the Edinburgh model”.

observations in the current and previous hours. These obser-

vations depend on the time of day and day of the year an% Results

are sensitive to year to year variations. That is, a particu-

lar year might be “windier” or “less windy” than the year The work here utilises a training window for model estima-

or years on which the trends were calculated; the de-trendeglon and a forecasting window for its subsequent validation

auto-regressive model would, as a consequence, not necegms trained on January 2006 to December 2006 and then t
sarily reflect the current year and thefdrences would be  year 2007 was used to evaluate the model's predictive abi
handled as best it can by the VAR modelling. This highlights ity Figure 3 shows the improvements gained over persistend
the particular challenge of accurately modelling inter-yearforecasting (where the wind speed at time “now” is held fixed

variability. Particular sites may have observations in somefor a|| look aheads) in the RMS errors at 4 candidate sites.

years that dier markedly from the “current” year to which  The results from the purely onshore model are seen to be i
the model is applied for modelling or forecasting purposes. ferior to the mixed onshofeffshore model at nearly all sites
It should also be noted that diurnal trends are not signif-by a few per cent, except around the boundaries of the mods
icant far dfshore due to the absence of therméiéets, and  gych as those at station Aultbea2 and Valley. For sites lik
that coastal and inland sites may also have distinct patterngese it is hard to see the level of improvement as the lines i
associated with them. Fig. 3 are so close, so further calculations have been made
The synthesized wind speed series can then be convertegbscribed below. Improvements over persistence are easier
to hub height (of 80 m) using a power law (Wieringa, 1993) jgentify in Fig. 3 and can be seen to be up to 25 % and mor
and then passed through a wind power curve such as that usgdl 6 h ahead, such as those at Church Fenton, although at si
in the TradeWind report (2009), to produce a wind power se-gych as Valley and Aultbea2, located around the edges of th
ries. These power series are obtained at all the modeffed 0 model's geographical limits, percentages are down to 109
shore sites (chosen to represent the main existing or proposegt 6 h ahead.
wind farm locations) and then calculations of capacity factors
are made (The capacity factor is the ratio of energy produced
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Further calculations to explore the benefits of extending Comparison of modelled series
the data used to includetshore sites (albeit in the form of 60 —— BADC.COSMO ‘
meteorological model output) have been undertaken for all —~ | I SEDM model

o
o

sites for look ahead periods from 1 to 6 h. We concentrate;_/5
here on the results for just 3 and 6 h ahead forecasts. The im £
provement (in percentage terms) achieved by the addition ofi
offshore met. model data to the onshore data for the 6 h ahea& 3ol
forecasts, compared with the purely onshore analysis, variec§
across the sites studied, ranging frerh.8 % (i.e. a slight S o0l
degradation) for the Western Isles, up to a 22.1 % improve- S
ment for Walney Island, with an overall mean forecasting € 1ol ]
improvement across all sites of 10.4 %. Interestingly, at 3h
ahead, improvements rose by up to 59.6 % (for Tiree) with o 5

N

. . FPCEN ST FEES LA LENF P REE LS
an overall mean improvement of 16.3%. The main reason for o' o& e 86" S5 @ ol @ e
) Q"
the better performance of the onshooftshore model would & & @@é’%& Q@;ﬁf ¥ e S
&'

appear to be simply due to the presence of additional rele- o v

vant (i.e. correlated) data, that happens in this case to cover a

wider region. Additional onshore data of good quality would Figure 4. Comparison of capacity factors derived from VAR model
be expected to also improve the modelling in a similar man-and Edinburgh model.

ner. However if the fishore data was not of good quality,

or there was no significant relationship between tfishore

and onshore data, then no improvement would be anticipated"ith differences up around 24.%. It is thought that these re-

Further research is required to explore the strength of the re§UItS may be due to the greater concentration of input data to

lationship of any new data that might be added to an existingIhe \,/AR model in th? regions showing better_ agreement. ,
model, and the improvements (or otherwise) in model per- A judgment of which of a number of candidate models is
formance. It would be attractive then to derive mathematical™m©St “accurate” depends on the purpose to which the mod-

constraints based on correlation that would determine wher§!S &€ being put. For example, the priority might be to ade-
an additional measurement site would improve the perfor-duately reproduce monthly average wind speeds, or alterna-
mance of an existing model tively the hour-by-hour variability, and a given model might
How well the VAR model presented here compares with not achieve both of these equally well in comparison with
other “state-of-the-art” techniques isfittult to say as model other models. Moreover, such an evaluation depends on the
vailability of actual observations to which the models can be

results are highly data dependent. A proper comparisorf

would require an exchange of data sets, or the implemenSompared. Although many models are based on wind speed,

tation in full of the methods used by others. This is beyondto be of value in the energy sector, they must in the end quan-

the scope of the present research. See the reviews by Giebiy Wind power, and this depends on an accurate wind speed

et al. (2011) and Ma et al. (2009) for more information on to power conversion which, in itself, is far from trivial. For
other modelling approaches. example, in practice it depends on wind direction, the size of
Figure 4 shows the two sets of wind turbine capacity fac-2 wind farm, the terrain in which it is located and the design

tors calculated for the Edinburgh model and the VAR model©f Wind turbines at the farm and their spacing (mainly due to
at all the dfshore sites used in the VAR model and, whilst wake dfects). Furthermore, the validation of a wind power

a few significant discrepancies do exist, the overall patterrfi€ Series depends on hour-by-hour observations of wind
of results is similar, even though the two models were based©Wer- In Britain, only monthly total energy outputs are pub-
on completely independent data. It should be noted that thgcly available which limits the exter_1t of the validation. The
Edinburgh model was based on longer term information cov-Edinburgh model was compared with these monthly outputs
ering nearly 10years (from April 2001 to December 2010). and here, a comparison is made with the results from that
The capacity factors for the VAR model synthesis used herdndel-

are based on just two years, 2006 and 2007; this period was

seen from a GL Garrad Hassan paper (Hodgetts, 2011) to be Conclusions

fairly “typical” in that it was close to the long term mean.

A brief investigation of possible regional variations in the A method capable of providing both wind forecasts and a
agreement in capacity factor estimates from the two methodsynthesis of wind speeds (and wind power) across the GB
was made. It was tentatively concluded that the South Eastpower network system, useful for planning and operation
ern dfshore sites on the whole showed better agreement thapurposes, has been presented. Further improvements to pub-
those on the West of the country, although the sites of Lynnlished work have been made, including a more rigorous ap-
and Inner Dowsing, and Dudgeon showed poor agreemenproach to separate training from application. In addition, the
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VAR model has been extended to includ&sbore meteoro- Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M., anfl
logical model data. The performance of this extended VAR Skea, J.: The costs and impacts of intermittency: an assessment
model forecasting has been assessed, and improvements overof the evidence on the costs and impacts of intermittent generg
persistence by as much as 25 % have been demonstrated. Uption on t_he British electricity network, UK Energy_ Research Cen-
t0 3.7 % of this improvement can be attributed to the addition e available athttpy/www.ukerc.ac.ufsupporftiki-index.php?
of the dfshore model data at 6 h ahead. page-=Intermittency March, 2006. _ » .
Capacity factors atféshore wind farm sites (both existing 2/Kins: S., Eager, D., and Harrison, G. P.: Characterising the rell
. ability of production from future Britishfdshore wind fleets, IET
and planned) have bet_an compared W'th an approach _based Renewable Power Generation Conference, September, 2011.
purely on a meteorological model and, with a few exceptions,.jiji p. McMillan, D., Bell, K. R. W., and Infield, D.: Applica-
it has been shown that the two approaches are in good agree- tion of auto-regressive models to UK wind speed data for powe
ment at most sites. Future work will involve the development system impact studies, IEEE Trans. Sustain. Energ., 3, 134-141
of interpolation techniques (e.g. Kriging) to facilitate the es-  January, 2012.
timation of capacity factors at onshore wind farm sites awayHodgetts, B.: A statistical review of recent wind speed trends in the
from meteorological measurement sites, with which itwillbe UK, RenewableUK conference, Manchester, availablehtip:
possible to validate against measured wind power data from //www.gl-garradhassan.cgassetglownloadgA_Statistical

the Renewables Obligation Certificate register. Review_of_Recent_Wind_Speed_Trends_in_the_UK.pdf
October, 2011.
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