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1. General Background

1.1Power Electronic modules Reliability

Power electronics industry requirements have increased significantly in the

recent years towards higher integration and functionality. That led to higher

power density and dissipation and less heat manipulating capabilities due to

smaller sizes and higher power ratings which makes the issue of reliability of

power modules a major concern for manufacturers and customers.

A Power Electronic Module is a group of power electronic semiconductor

devices (MOSFET, IGBT, Diodes) that are assembled on a substrate and are

connected with each other and with the outside world by wire-bonds. Power

modules are normally used in utility power systems, power conversion, traction

and drive circuits of resistive and inductive loads in industrial applications. Thus,

they operate in harsh environments and are subject to rough temperatures,

currents, humidity, vibration and other stresses which require high reliability

standards to minimize maintenance, cost and down time and to increase lifetime,

maintainability and safety.

A power module is constituted of different materials e.g. copper, silicon,

ceramic and aluminium that are assembled into a layered structure as shown in

figure 1. Those materials have different coefficient of thermal expansion (CTE)

and they are subject to thermal cycling due to power dissipated into heat by

semiconductor devices under operation. And because of that mismatch in CTEs

mechanical stresses generate in the contact interfaces between layers. Along

time, cracks start to initiate and propagate between layers leading to mechanical

and electrical failures.

Die

Copper

Solder

Ceramic

Baseplate

Figure 1. Layered structure of Power Module
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Solder layers and wire-bonds are the most vulnerable sites to fail. Cracks

initiate at the corners of a solder layer and propagate towards the centre. Similar

mechanism happens between a wire-bond and the silicon device which results in

an open circuit when wire-bond lifts off. Those failures could induce other failure

mechanisms such as latch-up and thermal runaway.

A survey conducted by Shaoyong et al. [1] showed power semiconductor

devices to be the most fragile component in power systems and IGBTs devices

were found to be the most common for power applications. In that survey,

participants were from aerospace, automotive, utility power and many other

sectors and the majority of them have considered reliability to be a very important

issue.

1.2Classical reliability methods

Reliability assessment has historically been done based on statistical data

of a run-to-failure experiments where a large sample of a product is run under

predefined conditions. These data is then used to fit a failure rate reliability model

which is used to calculate reliability measures as MTTF and MTBF. Those

statistical reliability models are extensively used although they were proven to be

inaccurate. Different organisations have published handbooks for reliability

models e.g. British Telecom HRD4 and HRD5, CNET, Siemens SN29500 and

Mil-Hdbk-217 based on different reliability standards. Those models are updated

frequently to cope with the new manufacturing technologies, requirements and

designs which change regularly in order to increase reliability of electronic

products. Therefore, those handbooks should be under a regular updating

process as is mentioned in the introduction of Mil-Hdbk-217 [2].

Those models are based on run-to-failure data collected from field or from

experiments which makes it difficult for the new designs to be tested for their

reliability during design stage and to check the effect of design parameters on

product reliability.

Failure rate reliability models were proven to be inaccurate by many

researches [3, 4, 5]. A fact that Mil-Hdbk-217 is used by 80% of manufacturers

and that it has not been updated since 1995 raises a big argument about the

accuracy of those models and their ability to cope with recent designs

manufacturing technologies [6]. In addition, the fact that those models are based
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on run-to-failure data makes it difficult for new designs to be tested for reliability

during design stage and to check the effect of design parameters on product

reliability.

Therefore, researches are initiated to look for accurate alternative

methods for reliability assessment that could overcome those issues and

consider design parameters, environmental and loading profiles, and in-situ

measurements to assess reliability during design and field operation.

Consequently, reducing maintenance cycles or even eliminates periodic

maintenance procedures and relying completely on preventive and predictive

maintenance actions depending on evidence of the need [7].

1.3Prognostics and Health Management (PHM):

The emergence of Prognostics and Health Management (PHM) systems

comes as an attempt to overcome issues of failure rate models and monitors the

product during normal operation. It reduces maintenance procedures by giving

indications of system health state and estimating remaining useful life and

consequently reduces costs of system out of service due to maintenance

procedures. Moreover, it prevents destructive failures of system components

which could cause serious disruptions in system operation.

Prognostics can be defined by the estimation of remaining useful life

(RUL) of a system in order to help the decision process of maintenance and

logistic support. While, health management in the other hand looks into the

effects of parameters affecting system lifetime and controls those parameters in

order to extend system lifetime during design phase and during normal operation.
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2. Literature Review

2.1Causes of Power Modules failure

During the lifetime of a power module it is subject to different stresses

during manufacturing, storage, transportation and field operation. Those stresses

can be categorised into cyclic and overstress. Cyclic stresses are those which

are repeated within a time period and have a mean value and amplitude. They

could be thermal, chemical, mechanical or electrical stresses. Thermal cyclic

stresses are the most influential on power modules due to the mismatch of CTEs

of materials constituting the module which results into cyclic shear strains in the

contacting interfaces of different materials leading to cracking and voiding.

Thermal overstress is another cause of failure where the device goes

under a constant high temperature that causes voids to be induced in the solder

layers. Electrical stressing happens when high voltages are applied to the device

which results in high electrical field. Power cycles cause the semiconductor to

degrade as well and its electrical characteristics to change.

2.2Failure mechanisms

Time-Dependent Dielectric Breakdown & Hot Carriers

TDDB is a wear-out mechanism that takes place in the oxide layer SiO2 at

the gate of a transistor where charges get trapped during operation under high

temperature. The accumulation of these charges leads to form a conductive path

inside the oxide layer and ends in a short circuit.

Hot Carriers is an overstress mechanism that is generated under high

electric fields and high temperature. Similar to TDDB is causes charges to trap

into the oxide layer and form a conductive path leading to short circuit.

Threshold voltage, transconductance and gate leakage current are

potential indicators of those mechanisms [6, 9, 10, 11].

Latch-up

This mechanism is activated at high temperature and high electrical

currents where control over a transistor gate is lost and the device cannot be

switched off until current is cut from the power source. This mechanism can lead

to thermal runaway which ends up with a device burn-out.
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Solder Layer Degradation

As a result of the thermal cycling and due to the mismatch of CTEs of

power module materials mechanical strains and stresses induce in the

interconnect interfaces and cracks start to initiate between different layers. This

process is called fatigue and it affects all interconnects of different materials.

Among different layers of power module the solder layer between die and

substrate, the solder layer between substrate and baseplate and the interface

between die and wire-bond are reported to be the dominant sites of fatigue.

Solder layers have thermal and electrical functions. They are part of the

thermal path that dissipates heat generated by power dissipation. Consequently,

degradation of these layers by the development of voids and cracks changes

characteristics of the thermal path and device temperature will increase [12].

Thermal resistance and capacitance are affected by this degradation and the

transient thermal response and steady-state of junction temperature will be

affected as a result [13, 14, 15].

In terms of electrical effects of solder layer degradation, it can change

collector-emitter resistance [10]. This can be explained by a reduction in the

cross sectional area of the conductive solder layer which is inversely proportional

to the conductor resistance. An indirect effect results due to temperature increase

which changes electrical performance [16, 14].

Solder joint fatigue can initiate and accelerate other failure mechanisms

since temperature is the main driving factor for many of them as in the case of

latch-up, TDDB and wire bond lift-off [12, 18].

Bond wire lift-off

Another result of thermal cycling and fatigue mechanism is the

degradation of the interface between wire-bond and die. Wires are used to

connect emitter and gate to conductive traces in the module. Cracks develop

between wire and silicon die due to CTE mismatch which end up in a lift-off and

an open circuit. It is reported in literature that emitter connections on the die is the

dominant wire-bonds that fail before others in the module [14, 15, 19].

The process of reconstruction in emitter metallization reduces electrical

conductivity which in turn increases collector-emitter resistance RON and VCE(ON)

[15, 20, 19, 21]. It is reported that lift-off changes parasitic inductance and
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capacitance of the module which leaves an effect on the transient response of

electrical variables [22, 23]. It was found that there is an interaction between wire-

bond degradation and solder joint degradation where the later accelerates the

failure of wire-bonds [16].

2.3Failure Modes, Mechanisms and Effect Analysis (FMMEA)

FMEA (Failure Mode and Effect analysis) and FMECA (Failure Mode,

Effects and Criticality Analysis) are procedures that organise investigation of

physical processes causing failure, their causes, and failure states and effects.

They were adopted officially by many firms [24, 25]. Emergence of the need to

diagnosis and prognosis to improve system reliability in the field of operation has

led to enhance those two procedures since they are not concerned with

identifying operational stresses and failure models [26]. Those drawbacks led to

develop Failure Modes, Mechanisms and Effect Analysis (FMMEA).

FMMEA comes as an improvement over FMEA/FMECA to cope with the

needs of life consumption monitoring and prognostics based on physical models

of degradation to determine failure causes and models. The procedure is

depicted in figure 2. It starts by identifying the failure mode which is the status

that device fails into. It studies potential causes that have led to this failure and its

relationship to environmental stresses and loading profiles. Determine

mechanism taking place and physical model representing that mechanism.

Determine priority of the mechanism based on occurrence frequency and failure

severity. The last step is to document the information gathered throughout this

procedure.

2.4Accelerated Aging of IGBT Power Modules

Accelerated aging tests are intended to induce failures in power modules

in a shorter period of time for purpose of reliability testing. Power modules can be

aged by thermal or power cycling tests. In thermal cycling power module is put

inside a chamber that cycles the ambient temperature around a mean value Tm

by amplitude ΔT. Power cycling in the other hand put the module in more realistic 

test environment where electrical current is passed through it that heats the

device up to a maximum temperature. The current is then bypassed and the

device is cooled down to a minimum temperature and cycle repeats.
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Figure 2. FMMEA procedure [27]

The difference between thermal and power cycling test was described by

Engelmaier [28] who has argued that effects of thermal cycling differ from power

cycling since all layers go under similar thermal transients that make temperature

differences between layers less significant than it is the case with power cycling.

Thermal gradients result in power cycling tests while it does not in thermal

cycling. Therefore, reliability results produced by thermal cycling tests will be

different from those of power cycling tests.

Power cycling of power modules can be done under DC or PWM switching

conditions. PWM is supposed to be more realistic than DC switching since it is

the normal operating mode for most power application. No standards are

available for power cycling tests so that a comparison between the two aging

regimes is desirable.

In DC power cycling the gate of transistor is biased by a constant voltage

causing current to pass through the device. The main power loss in this test is

conduction losses caused by the resistance of the device. Therefore, increasing

power dissipated in the device under DC conditions requires increasing the

current. The period of current pulse has an effect on the failure mechanism

Identify potential failure

Identify potential failure

Identify potential failure
mechanisms

Identify failure models

Prioritize failure mechanisms

Document the process

Identify environmental and
operational conditions
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initiated in the module [16]. Anti-parallel diodes of a power module are not

stressed in this aging test.

The PWM aging test is done by applying a pulse train with a

predetermined frequency and a modulation signal to the gate. The amplitude is

chosen so that it is sufficient to bias the gate. Switching losses are the main

factor of device heating in this test and it is a function of switching frequency. The

higher the switching frequency the more power is dissipated in the device.

Measurements of electrical variables are more difficult and challenging under

these conditions.

A comparison between the results of aging tests conducted by many

researchers under DC [16, 14, 20, 29, 30] and PWM [15, 19, 31, 32] regimes

show that the most influential factor on the generated failure mechanism is

temperature profile regardless of the excitation signal used, while chip level

degradation (TDDB and Hot carriers) in more likely under DC conditions.

Minimum and maximum junction temperature Tmin, Tmax, mean junction

temperature Tm, temperature swing ΔT, turn-on and turn-off periods and collector 

current are all parameters that could affect generated failure mechanisms during

power cycling tests. Sankaran et al [19] found that ΔT has higher influence on 

device lifetime than Tm. Similar results are stated by LESIT project [20] which

showed that wire-bond lift-offs occur before solder joint fatigue.

So it can be concluded that wire-bond lift-off mechanism are more

dominant for large ΔT and small periods, while solder joint fatigue is more 

dominant for smaller ΔT with longer periods since creep mechanism could 

accelerate degradation of solder layer. Moreover, interaction between these two

mechanisms is more significant at lower stress levels.

2.5Potential failure indicators

Failure indicators are variables that reflect degradation process in a power

module. They can be directly measured variables or they can be extracted from

measurement data. Failure indicators are normally affected by factors other than

failures such as temperature and loading profiles during normal operation of a

power module which masks effect of failure mechanisms. That requires
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techniques to discriminate different effects and extract effects of temperature,

loading and degradation.

Efficiency of PHM systems relies essentially on failure indicators [33].

Therefore, rules were proposed to choose failure indicators for PHM applications

in order to be suitable for prognostication. Indicators that are non-monotonic are

difficult to extrapolate since their behaviour is unpredictable. Variance of an

indicator can affect accuracy of prediction and therefore a small variance is

desirable. Some signals can change behaviour according to underlying

processes such as changing from monotonic to non-monotonic after an event

happens while others could give a late indication of failure. So that choosing the

right indicators are an essential step in PHM for power modules.

On-state Voltage VCE(ON)

On-state voltage VCE(ON) is the voltage measured across collector and

emitter connections while device is in conduction mode. This voltage is a function

of temperature, loading and gate voltage. For IGBT devices temperature

dependency changes with structure where Punch-Trought (PT) structure has a

variable temperature coefficient while Non-Punch-Trough (NPT) structure has a

positive coefficient [34, 35] .

On-state voltage was considered an effective failure indicator for online

monitoring purposes [10, 31, 36, 37, 38]. It is believed that VCE(ON) is an indicator

of wire-bond and solder layer degradation since it is temperature sensitive. It is

affected by the electrical resistance which result from the sum of resistances of

solder layer, wire-bonds, PN junction, and contact interfaces [21, 29]. As cracks

and voids develop in the solder layer it reduces the cross sectional area current is

passing through, and as wire-bonds lift off the current passes through fewer

number of wires and the active chip area is reduced. Degradation of emitter

metallization reduces electric conductivity and increases ohmic resistance [21].

All that leads to an increase in VCE(ON) as failures develop in the power module.

The time between observing a change in the measured voltage and

complete failure of a power module was considered in literature. Smet [31]

observed an indication of VCE(ON) change at about 14% of the remaining life of the

power module while Xiong et al [36] observed the change before 20% of time to
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failure. Scheuermann [16] observed the change at 30% for low stress conditions.

Diversity in tests results are justified by the use of power modules from different

brands and different test conditions.

Measurement of VCE(ON) during normal operation of power module is a

challenging task due to high voltages and high switching frequency. That requires

high common-mode rejection ratio, high bandwidth, high resolution and proper

isolation of measurement circuit from the digital system to reduce noise and to

prevent hazards of electrical shocks.

Different measurement circuits were proposed to measure VCE during

normal operation. Desaturation circuit built in gate drives which is used for

protection against short-circuit failures was used by Anderson [10] and Peng [39]

to measure VCE(ON). Other solution is presented in [32, 37] where clipping circuit is

used as input stage for a differential amplifier to allow accurate measurement of

VCE(ON). Due [38] proposed a measurement circuit utilizing a relay to isolate the

ADC from power circuit.

Thermal Resistance:

Thermal resistance is the ability of a material to resist heat flow between

two points of different temperatures. In a power module different layers of

materials are layered on top of each other as shown in Figure 1 to form a heat

conduction path where the sum of all thermal resistances of layers are expressed

by junction to case resistance RѲjc.

Junction-to-case thermal resistance was considered by many researchers

as a failure indicator for solder joint fatigue [14, 16, 15, 32, 40] since it reflects

change in thermal conduction path due to cracks and voids. It was reported that

wire-bond lift-offs affects RѲjc since active area of the chip is reduced with lift-offs

and that causes the same amount of current to pass through smaller area which

increases power dissipation and junction temperature [41].

Challenges in estimating RѲjc reside in estimating junction temperature TJ

which is normally an inaccessible variable. Similar to VCE, real-time measurement

of TJ or RѲjc will be affected by loading profiles and other operational conditions.

Sankaran et al [42] proposed a method to estimate RѲjc utilizing junction

temperature TJ, case temperature TC, substrate temperature TS and current using

thermocouples and power dissipation look-up tables.
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Dawei et al [43] estimated the change in RѲjc to monitor degradation of

solder layer where a thermal model calculates power dissipation from

measurements of case temperature, ambient temperature and collector current.

Power loss model is made of a look-up table of power dissipated in the module

under healthy and degradation conditions of solder layer. A fault severity analysis

then calculates the difference between estimated power loss and an initial

healthy baseline to extract the change in thermal resistance which determines the

state of solder layer.

Thermal Impedance

Thermal impedance is representative of the thermal conduction path which

constitutes of resistive and capacitive components. It is used to estimate transient

response of the junction temperature. Therefore it contains more information

about the thermal path and its constitutive layers. Christiaens et al [44] and Katsis

[45] showed the relationship between thermal impedance and temperature of

different layers of power modules. They reported that slop of the thermal transient

which is a measure of thermal impedance can be used to monitor the condition of

solder layers. Katsis [45] related the change in thermal impedance with the

percentage of voided area of a MOSFET device.

On-resistance

On-resistance RON was reported to be a potential failure indicator. It is the

ratio of VCE(ON) to IC during steady state phase of operation. Morroni [46] proposed

an online monitoring system using an FPGA to monitor the health of a power

converter by observing RON of a TO-220 power MOSFET. A model of power

losses in the converter is used to extract the value of RON by a curve fitting

algorithm utilising voltage and current measurements.

Celaya [47] used RON as failure indictor of die-attach degradation in an in-

situ monitoring of TO-220 power MOSFET. Measurement of current and voltage

were recorded to calculate RON. Dependence on temperature was learnt from

experimental data to isolate operating and health conditions.

Button [48] suggested that the increment in RON would increase

conduction losses in a DC-DC converter which would in turn decrease efficiency.

That would force that controller to increase duty-cycle to cope with efficiency
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drop. Consequently, monitoring current vs. duty-cycle trend reveals the

undergoing degradation in switching devices.

Threshold Voltage

Degradation of gate oxide due to TDDB and Hot Carriers can be detected

by monitoring threshold voltage [49, 50]. It is sensitive to device temperature and

it has a negative temperature coefficient [49, 34, 51]. Degradation of oxide layer

is not a dominant failure in IGBT devices while it is not the case with SiC devices

which suffer from large shifts in threshold voltage because of the degradation of

oxide layer under high temperature and high voltage stressing [52] which makes

threshold voltage a potential candidate as a failure indicator for SiC devices.

Ringing characteristics

Transient response parameters such as turn-on and turn-off delay times

(tdon, tdoff), rise and fall times (tr, tf), and current tail are affected by device

degradation, temperature, loading, and gate drive control [53, 34]. Aging of a

power module can affect those parameters where tdoff, tf and current tail were

observed to change during lifetime of power modules [15].

Those parameters were considered as failure for PHM systems. Turn-off

time of voltage waveform was used by Brown et al [12] in an online monitoring

system for IGBTs in power inverters to monitor latch-up failure. The overshoot of

VCE was observed by Sonnenfeld [54] to be indicative of thermal degradation of

an IGBT TO-220 package. Current tail is suggested to be a precursor of latch-up

and thermal runaway of IGBTs [55].

Kexin et al [23] and Zhou [22] studied effects of wire-bond lift-offs on

parasitic inductance and capacitance of a power module. Gate-emitter voltage

waveform, VCE overshoot and rise time and di/dt were all reported to be sensitive

to wire-bond lift-offs. Ginart et al [56] proposed an online monitoring system for

power converters by extracting switching waveforms from phase currents.

Ringing characteristic such as damping factor, natural frequency and frequency

contents were identified as potential failure indicators. Signal processing

techniques are used to extract those features from measured waveforms for

diagnostics purposes.
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2.6PHM Approaches

2.6.1 Data-based Methods

Data-based methods rely on identifying measurable variables that reflect

degradation of the system being monitored. Measurement data are analysed and

processed to extract signature of degradation using feature extraction algorithms.

Extracted features are then used to diagnose failure and to fit models that are

used to predict end-of-life using data trending methods as shown in figure 3.

Their application could be limited by the availability of measurement data and

degradation information contained in that data.

Figure 3. Data-Driven Prognostic

The advantage of data-driven methods relies on their ability to reflect the

real conditions of the system during its operation and the ability to diagnose root

cause of failure in some cases. Therefore, some projects were initiated to explore

applicability of those methods on electronic systems. CBM+ project [7]

investigates those methods in order to guarantee reliability of systems under their

normal operation conditions.

The drawbacks are represented by the need for training data for model

learning under different health conditions of the system which could be difficult to

obtain especially when degradation process and failure mechanisms could not be

initiated separately during experiment. In addition, data may give late indications

of underlying failures which might limit the leading time of detection and

prognostication. Data could be masked by different factors such as environment

and loading which might make separation between failures a challenging task.

Many attempts were done to learn behaviour of degradation data during

real-time operation of systems. Goebel et al [57] used the Gaussian process

regression (GP) for battery PHM. His method failed to learn the nonlinear

behaviour of the failure indicator extracted from data due to limited size of

available data. He noticed that predictions become more accurate as the failure
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indicator becomes closer to its limit. The same method was applied by Celaya

[58] for power MOSFET prognostics using RON as a failure indicator.

Celaya et al [59] applied Extended Kalman Filter (EKF) for Power

MOSFET prognostics. The degradation model was obtained experimentally

based on observation of RON which is described by an exponential model as a

function of time. A state-space model is then derived and used for EKF algorithm.

The same approach was used in [60] for prognostication of electrolytic capacitor

using capacitance data which was found to reflect capacitor electrolyte

degradation.

Particle Filter (PF) was applied for IGBT prognostics by Patil [61] where

VCE(ON) degradation data was used to fit an experimental model which used then

to derive a state-space representation. Saha [55] proposed a particle filter to

prognosticate IGBTs using an exponential decay model for the fitting parameters

of current tail. An exponential model was fit to the current tail and model

parameters where then used as a health indicator. The behaviour of those

parameters was found to be exponential which is used to build the state-space

model. PF was also used for Power MOSFET prognostics [62] and battery

prognostics [63].

Neural Networks were used extensively in the field of diagnostics and

prognostics when training data is available. They could learn complex models

and correlate many sources of data to a damage measure. NN were not widely

applied to electronics PHM because of the limited measurable variables. A major

problem with NN from a prognostic point of view is its inability to give a measure

for uncertainty. Some solution to this problem was found by proposing Bayesian

Artificial Neural Networks.

2.6.2 Physics-of-Failure (PoF) Methods

PoF models started to be considered as a potential candidate for reliability

prediction since 1970 [6] because it allows better understanding of the root

causes of failures. Failure analysis process carried out on failed components is

used to determine the physical process of degradation undergoing in the

material. Run-to-Failure experiments are used to monitor the effect of different

loading conditions on degradation process and to fit empirical models that
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represent the physical degradation process. PoF methods are considered to be a

design time reliability assessment approach that allows considering effects of

design parameters on product lifetime. They incorporate geometrical parameters

(thickness, length, area, ….) and material parameters (CTE, Young modulus, …)

so that allows considering reliability during design and manufacturing process by

examining effects of different materials and different design prototypes.

Those methods are having an increasing attention in recent researches

and projects that are conducted by leading organisations such as NASA, French

MoD and IeMRC [8, 6, 64]. Research is directed towards developing approaches

that allows to integrate PoF into an in-situ implementation utilising real-time

loading and environmental stresses.

Implementation of PoF approach requires knowledge of loading profiles

such as temperature, humidity, vibration, … , and finding relationships between

loading profiles and variables used by PoF models. This problem raises the need

to develop reduced order electro-thermal and thermo-mechanical models that

could relate measured loading profiles to variables used by PoF models which

can be immeasurable such as strains and stress intensity factor.

Electro-thermal model is used to estimate junction temperature of

semiconductor devices in a power module. A Thermo-Mechanical model is then

used to find mechanical stresses and strains generated at sites of failures. A

lifetime model is then used to get an estimate of the number of cycles to failure.

That is depicted in figure 4. In the case of arbitrary loading profiles where

temperature swings and means are random, loading profile data are analysed

using data reduction and cycle counting algorithms to extract loading parameters

such as swings, means and rates. A damage accumulation model is then used to

estimate accumulated damage as an effect of the applied loading.

Figure 4. PoF Prognostics
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Junction temperature estimation:

Junction temperature of semiconductor devices in is the main contributor

in PoF methods. The problem of estimating junction temperature is still an open

research problem [41, 65]. It plays a main role in solder layer fatigue and wire-

bond lift-off which are the two dominant failure mechanisms in power modules.

Junction temperature can be measured in three ways as stated in

literature. It can be measured using thermocouples fixed on the top surface of the

chip or using optical sensors such as IR cameras. Thermocouples give local

temperature reading and poor dynamical response while the other has the

advantage of producing thermal maps of the module but it requires removing

dielectric material covering the module. The third method is based on

Temperature Sensitive Electrical Parameters (TSEPs) which uses measurements

of voltages and currents that are functions of temperature to estimate junction

temperature.

TSEPs were reviewed by Avenas et al [65] and compared in terms of

sensitivity, linearity, feasibility for online measurements and other factors. He

found that the saturation current to be the most temperature sensitive parameter

while on-state voltage is the worst parameter in terms of sensitivity. Switching

parameters are another TSEP candidate for temperature estimation. All TSEPs

are masked by other parameters as well such as loading and dc bus voltage.

Many attempts were made to estimate junction temperature during normal

operation of a power device. One of the basic attempts that was implemented on

a microcontroller is proposed by Franke et al [66] which is based on an

experimentally models for power losses and thermal impedance. Then using

measurements of voltages, currents and temperatures junction temperature was

estimated as Tj = f(Pd,Zth). Kim [67] used measurement of on-state voltage to

estimate steady-state junction temperature based on a linearized experimental

model of VCEsat = f(Tj, IC, VGE).

Musallam [68] proposed an electro-thermal model for an IGBT power

module that gives temperature estimation based on measurements of collector

current, duty cycle and the estimated junction temperature as feedback. Power

losses were calculated using look-up table. This model is advantageous in the
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point that it gives an instantaneous junction temperature estimate which allows to

be used for PoF approaches, but it is not an adaptive method which would lead to

erroneous estimations as the power module ages and thermal conduction path

parameters change.

This problem was tackled with an observer –based estimator proposed by

Ginart [69] for junction temperature in SiC devices. A state-space model was

derived for the thermal path and a reduced-order observer was built to get

junction temperature TJ based on measurements of case temperature TC. The

error between measured and estimated case temperature TC is used to

compensate for the degradation in the thermal path. This is advantageous for

solder layer monitoring and for accurate prognostication.

A Fourier-series based thermal model of a power module was developed

by Du et al [70] which produces maps of thermal gradients in the module. This

method proves to have higher efficiency for computation than FEM and FDM

models so it seems to be promising in terms of fast computation required for real-

time implementation.

A potential method for junction temperature estimation in real-time

applications of power modules is mentioned by Barlini [71]. It is based on the fact

that di/dt is a temperature sensitive parameter and accordingly defines the

transconductance as a temperature sensitive parameter by the ratio of di/dt to

dvge/dt.

Thermo-mechanical modelling:

A thermo-mechanical model is a relationship between temperature loading

profile parameters (ΔT, Tm, dT/dt, fcyclic, tDwell) and mechanical strain ε induced in 

contacting interface between two different materials due to different CTEs. Many

attempts were made to build experimental thermo-mechanical models for solder

joint and wire-bonds. Held [20] proposed a thermo-mechanical model for wire-

bonds utilising temperature swing ΔT and the difference between CTEs. Ciappa 

[72] developed a thermo-mechanical model that considers creep behaviour in

solder joint under cyclic loading. Engelmaier [28] proposed a model for the solder

joint fatigue under cyclic loading considering geometrical high h and length L of

the solder layer. A model for plastic and creep deformations in solder joint of
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power modules was developed by Sundarajan et al [73]. Finite element

simulation was used by Yin et al [74] to derive a thermo-mechanical model by

fitting a second-order polynomial to simulation results. The model uses swing ΔT 

and mean Tm of thermal loading profile as inputs to the model.

Lifetime models:

Lifetime model is a relationship between loading parameters and number

of cycles to failure Nf or time to failure tf. Lifetime models were proposed for

different stages of failure mechanisms. Fatigue process for example can be

divided into two stages, crack initiation and crack propagation. So that lifetime

given by crack initiation model refers to number of cycles required to initiate

cracks in the material while a crack propagation model is used to give lifetime

according to crack propagation rate.

Coffin-Manson law is the most common lifetime model. It represents crack

initiation stage in fatigue process. It gives the number of cycles to failure

according to determined strain amplitude, while Paris law models the stage of

crack propagation [76].

Other forms of lifetime models were proposed by researchers depending

on specific application. For power modules reliability purposes, lifetime models

for solder joint and wire-bonds fatigue were developed according to run-to-failure

data. Manufacturers propose their own models according to their reliability

requirements. For example, Dynex semiconductors presented an experimental

temperature based lifetime model for wire-bonds in power modules based on

junction-to-case temperature [75].

Held [20] conducted a power cycling test on IGBT power modules and

found that lifetime of wire-bonds depends on temperature swing ΔT and mean 

temperature Tm which led to developing a model from Coffin-Manson law and

extend it by an Arrhenius term to model effect of mean temperature. This model

was extended by Bayerer [77] to include effects of power-on time, chip thickness,

wire diameter and wire current.
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Accumulated damage rules:

In the case of arbitrary loading profiles where loading parameters change

with time cumulative damage rule is used to calculate accumulated damage in

the material. Cumulative damage laws were reviewed by Fatemi [78]. The most

common damage law is the linear damage rule which was principally introduced

by Palmgren and was formulated later in a mathematical form by Miner as the

sum of ratios of number of cycles of an applied loading to the number of cycles to

failure resulting from a lifetime model.

Other damage accumulation rule was found from Stress-Strain hysteresis

loop. The area of the loop was found to be related to damage induced in the

material due to cyclic loading. The mechanical energy dissipated due to plastic

deformation of the material is calculated from loop area and by assuming a limit

to deformation energy lifetime can be calculated [79].

Length of crack is considered to be a measure of material damage after

cracks are initiated in the material. This was used by Sasaki [80] to estimate the

life of a wire-bond in IGBT power modules where FEA simulation was used to

build a thermo-mechanical model to estimate stress intensity factor.

Data reduction & Counting algorithms:

Loading profile for in-situ applications are recorded over long periods of

time which poses a problem for data storage and processing of large data

chunks. That could be a challenge for real-time systems which have limited

processing and storage resources. Here comes the need for data reduction

algorithms that extract loading parameters form loading profiles and store them in

a compact and condense data formats. Hayes and OOR methods are two

examples of data reduction methods which transform large time-based data into

peaks and valleys to reduce data size and remove data points which are of an

insignificant effect for lifetime estimation purposes [81]. Rainflow counting

algorithm is an example of loading parameters extraction algorithms that extract

parameters such as mean, swing, and rates and stores it in a binned data

formats to achieve further data reduction and save system resources. Vichare

[82] stated that a reduction of up to 85% reduction in data storage size could be

achieved.
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A good example of a well-established implementation of PoF method that

was considered for in-situ application for electronics is Life Consumption

Monitoring (LCM) developed by CALCE group [83]. It uses online measurements

of environmental loading that affects a considered failure mechanism. Recorded

data is processed using data reduction and counting algorithms to make it

appropriate for storage and for PoF model. The lifetime given by the failure model

is converted into a damage that is accumulated using a damage accumulation

rule.

Fan [81] applied LCM to monitor the state of solder joints in a PCB by

recording board temperature. A similar approach is used by Musallam [84] where

online junction temperature estimation is used to estimate junction temperature in

a power module. A temperature based Coffin-Mason lifetime model is used with

the linear damage rule to get a damage signal for wire-bonds and solder layer. A

real-time implementation of rainflow counting algorithm is developed to extract

loading parameters.

2.6.3 Fusion Methods

As concluded previously both data-based and PoF methods suffer from

disadvantages. Limited accessibility and sensitivity of measurement data to

failures is a main obstacle for data-driven methods while it reflects the real health

conditions of a power module under operation. PoF methods on the other hand

use information of design and materials and utilize loading profiles to give

estimates of lifetime but it cannot represent the real conditions of the power

module.

Competence of failure mechanisms at different sites is dependent on

loading profiles, geometry, material and other manufacturing parameters [41, 92].

So that, interaction of different failure mechanisms and their dominance changes

according to different factors. And considering the worst case as a criterion of

failure ignores all other information that could be useful for prognosis. That could

result in conservative predictions which are inaccurate and cost inefficient.

In order to overcome those disadvantages and utilize all sources of

information such as in-situ measurements, loading profiles, material and

geometrical information recent research routes in the field of PHM were directed
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towards fusion techniques [93] that benefit from advantages of both methods to

get more robust and accurate assessment of system health and lifetime. In

addition, uncertainty reduction is a major objective of fusion techniques. Fusion

methods are not about averaging different values but they should provide

measures for accuracy and reliability of fused values [94]. A general fusion PHM

is described in figure 5.

Figure 5. Fusion-based PHM

Knowledge fusion could be done at different levels in a PHM framework.

This can be classified on three levels, sensor level where raw data is collected

from a set of sensors. Features level where fusion is done on features extracted

from data. Knowledge level where information gathered from irrelevant sources

such as models, experiments and signal processing outputs are fused together.

Level of fusion depends on application, data, models and available sources of

information. In cases where sensor data is not easily accessible and

measurement data is limited low-level fusion is less probable to be considered. In

cases when information come from irrelevant sources higher-level of fusion is

more convenient.

Inputs to fusion process should be homogeneous when information comes

from different irrelevant sources in different formats such as different types of

sensors or outputs of different signal processing stages. That requires

transforming data and information into identical formats before fusion.

Remaining useful life

Measurement

Physics-of-
Failure Model

Data-Based
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Output of fusion process may not necessarily be better than its input. That

is fusion could produce information that is worse than it was before fusion since

bad information (uninformative data) could deteriorate good information

(informative data) when combined together. That raises the need for comparable

measures to assess the performance of fusion techniques in terms of accuracy,

robustness, data size and uncertainty. Saxena et al [95] proposed a set of

prognostic performance metrics for purposes of constructing a common ground to

compare different techniques in term of error margins, leading time, accuracy and

convergence.

Techniques from different disciplines can be considered as fusion

techniques. Some have a probabilistic nature while others do not. Bayesian

probability and Dempster-Shafer are two examples of probabilistic fusion

techniques that take information in the form of PDFs and produce PDFs at the

output. While techniques as neural networks and weighted average take

individual values and produce a fused single value. The former set of techniques

have the advantage to deal with uncertainty measures as a built-in feature while

for non-probabilistic methods additional steps should be proposed to tackle

uncertainty fusion.

Roemer [96] has reviewed some fusion techniques suitable for PHM

applications. Bayesian Inference, Dempster-Shafer, Fuzzy inference and Neural

Networks are all potential methods for information fusion. The choice of what

method to be used is application dependant. It depends on information amount

and format, required output format, real-time resources and computational

efficiency. There is an orientation towards probabilistic methods in the field of

PHM [95] since it have the ability to handle uncertainty measures especially in

fields where data is limited and inaccessible.

Orchard [97] investigated crack propagation failure under cyclic vibration

loading by collecting vibration data from a metallic plate using strain gages.

Features were extracted from the data and a state-space tracking and prediction

method based on Paris’ Law was used to estimate crack length in the material.

The fusion of PoF model and measurement data was formulated during state-
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space model construction where vibration data is used to update system states

and track crack state.

Goebel [94, 98] proposed a fusion method based on Dempster-Shafer

theory for bearing prognostic. A physical and an experimental models were used

to give two estimates of crack size. Models performance at different locations of

damage space is used to produce a quality measures that are assigned for the

models in a form of PDFs. The resulting crack size estimates are weighted by

their respective quality measures and results are aggregated using kernel

regression based method.

Other attempts to employ Bayesian techniques for knowledge fusion in

PHM systems include Bayesian Model Averaging (BMA) for crack propagation in

materials [99, 85] and Bayesian Networks which were applied for solder layer

degradation [17].

2.7Management of Uncertainty

One of the key factors in prognostics is the uncertainty of predictions. Any

prediction of a variable has a range of probable values in future which are

represented by a confidence interval or a PDF. It describes how confidant we are

about a predicted value. This uncertainty changes as new information is

available. The more data is collected as system propagate towards failure the

more certain (or less uncertain) the prediction is and the narrower its PDF is as it

is explained in figure 6 and figure 7.

Figure 6. Real and predicted RUL vs time
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Uncertainty management tries to find sources of uncertainty in the

prognostic process and estimate that uncertainty and find ways to reduce it as

more knowledge is available [85]. Uncertainty management was considered by

FIDES [8] and IEEE Std 1413-1998 [86] to be an essential factor for reliability

prediction.

Figure 7. Predictions at two different points.

Uncertainty evolves from different sources such as models, model

parameters, future loading profiles, failure thresholds and measurement errors.

Uncertainty sources could be reducible or irreducible according to the nature of

that source. For example, uncertainty in model parameters such geometrical

parameters could be reduced by improving manufacturing process, measurement

uncertainty can be reduced by using more accurate sensors. While uncertainty

from future loading could be considered irreducible since future loading is

unpredictable.

Uncertainty estimation methods can be parametric or non-parametric. If a

previous knowledge about the statistical properties of the data is available then a

parametric method could be used where parameters of an assumed PDF could

be learnt from the data. On the other hand if no prior information about the data is

available then a non-parametric method such as histograms or kernel density

functions is used.

In cases where data is difficult to obtain resampling methods such as

Bootstrap and Monte-Carlo methods are used to generate sets of data by

resampling from the original data set and replace some data points with the

generated ones. Consequently, producing a population of data sets that can used

to estimate different uncertainty sources such as model parameters [87, 88].
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Bayesian methods have gained increasing interest in the applications of

PHM. Many techniques that are based on Bayesian rules for regression and

prediction were proposed to tackle the problem of uncertainty. Relevant Vector

Machine (RVM) is a method that captures uncertainty in model regression

process [89]. Bayesian Model Averaging (BMA) deals with model uncertainty as

in the case where more than one possible model could fit the data or when more

than one failure modes are competing according to loading profiles [85].

Applications of uncertainty management techniques in PHM for electronics

were demonstrated by many researchers. Histograms were used by Guangfan

[90] to estimate PDFs of loading profiles. Vichare [82] used histograms and

kernel density estimation to find distributions of loading parameters for in-situ

measurements of temperature profile acting on a PCB. Gu [91] demonstrated

uncertainty analysis procedure in a PoF method for a PCB subjected to vibration

loading where sensitivity analysis was done to determine most critical parameters

affecting the damage then Monte-Carlo simulation is used to find distribution of

the damage indicator.
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3. Summary
It can be concluded from the literature review that application of data-

based methods in the field of power module prognostics is restricted by data

collection problems due to inaccessibility to the required data and mask effects of

operating conditions which distort failure signatures and effects. The matter that

raises a need for proposing ways to extract failure signatures from collected data

and estimating inaccessible variables which are essential for reliability and

prognostic.

Physics based models have constant variables that degrade in reality due

to aging effects and shift from their normal values which degrades model

performance as system ages. This poses the need for an adaptive technique that

can compensate for model parameters shift by updating them using data

collected in real-time and find a residual signal or a relationship between model

parameters and measurements that can be used in the update process.

Junction temperature is an essential variable for power module reliability

assessment and prognostic since it is the main contributor in the two dominant

failure mechanisms in power modules which are solder layer fatigue and wire-

bond lift-off. This variable is inaccessible and might require invasive methods to

measure surface and case temperatures to be used in the estimation process

which poses some practical and reliability concerns when implemented in

commercial power modules. Therefore, a non-invasive method that can estimate

junction temperature from electrical variables and that could compensate for the

degradation in the thermal path is desirable to monitor degradation of the solder

layer and assess its damage level.

Detecting wire-bond lift-offs and estimating the damage in the contact

interfaces through measurements can reduce the chance of any destructive

failure in power systems and generate an alarm in advance of a complete

component failure.

An online implementable solution that can be integrated into a commercial

gate drive to monitor health state of power modules can highly reduce

maintenance cost and increase reliability of a power system by monitoring

damage in real-time and preventing failures by early detection.
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5. Appendix 2: Thesis Outline
Chapter 1: Introduction

A general overview of the techniques used in this work, fundamental

mathematics and description of work methodology.

Chapter 2: Literature Review

An overview of the work done in the field of PHM systems for power modules,

Data-based, PoF-based, and Fusion-based Methods.

Chapter 3: Mathematical problem formulation

Describe mathematical formulation of electro-thermal model, state tracking or

adaptive filtering method, power dissipation model and other experimental models.

Chapter 4: Experimental determination of model parameters

Experimental procedures used to estimate parameters of electro-thermal

model, look-up tables, and experimental relationships.

Chapter 5: Real-time implementation platform

Construction and description of the real-time FPGA system, programming,

auxiliary measurement circuits and its application to a power system.

Chapter 6: Results and Conclusions

Presentation of real-time system outputs and performance of electro-thermal

model and validation of the model with other ways of measurements.


